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Abstract

Finding visual correspondence between local features is key to many computer vision
problems. While defining features with larger contextual scales usually implies greater
discriminativeness, it could also lead to less spatial accuracy of the features. We pro-
pose AutoScaler, a scale-attention network to explicitly optimize this trade-off in visual
correspondence tasks. Our architecture consists of a weight-sharing feature network to
compute multi-scale feature maps and an attention network to combine them optimally
in the scale space. This allows our network to have adaptive sizes of equivalent recep-
tive field over different scales of the input. The entire network can be trained end-to-end
in a Siamese framework for visual correspondence tasks. Using the latest off-the-shelf
architecture for the feature network, our method achieves competitive results compared
to state-of-the-art methods on challenging optical flow and semantic matching bench-
marks, including Sintel, KITTI and CUB-2011. We also show that our attention network
alone can be applied to existing hand-crafted feature descriptors (e.g Daisy) and improve
their performance on visual correspondence tasks. Finally, we illustrate how the scale-
attention maps generated from the attention network are visually interpretable.

1 Introduction

Finding correspondences between local features in multiple related images is a fundamental
problem in computer vision. It is crucial for a plethora of applications, including optical flow
[32, 37, 46], structure-from-motion [1], visual SLAM [26, 35, 36], stereo matching [31, 53],

non-rigid 3D reconstruction [14] as well as video segmentation [18].

Central to the correspondence problem is the design of feature descriptors that need to be
resilient to lighting change and different object poses and scales. To select the characteristic
scales, many hand-crafted descriptors analyze feature saliency in a scale space formed by
applying heuristic image processing operators on different scales of the images. The resultant
descriptors are extracted from either one [8, 30] or many [22] of these scales. However,
due to their heuristic nature, the scale analyses of these hand-crafted descriptors are limited
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Figure 1: The architecture of AutoScaler. AutoScaler consists of the feature network and the
attention network. The weight-sharing feature network extracts feature maps from the input
image at multiple scales (two are shown for simplicity). The attention network computes
attention maps for each scale and optimally combines the multi-scale feature maps. The
entire network can be trained for the task end-to-end in a Siamese framework.

Scale 1

to a sparse set of image locations with special structures, such as blobs, corners and high
contrast regions [33]. To compute dense correspondences using these descriptors, one needs
to impose smoothness prior to regularize the correspondence map from the sparse matches,
which often experiences loss in accuracy [7, 15, 41].

Recently, with the growing availability of synthetic and real-world datasets, learning-
based approaches have been applied to compute similarity metrics for visual correspondence
problems. These approaches include boosting [44], random forest [46], convex optimization
[40] and most notably, convolutional neural network (CNN) [20, 25, 29, 52, 53]. Compared
to traditional hand-crafted descriptors, CNN is powerful in that it can learn discriminative
robust features from large amount of training data. However, in order to be robust against
scale change, these features often resort to larger receptive fields through successive pooling
[27, 39], large strides [27], dilated convolution [51] and multi-scale aggregation [28, 42].
As a result, the spatial accuracy of the resultant features is compromised. To address this
problem, a few techniques are introduced such as spatial transformer network in [13] to nor-
malize object pose change and bi-scale ensemble model in [12] to combine matching scores
from two scales. Nevertheless, it remains unclear how to optimally combine features from
different scales based on the analysis in the scale space for visual correspondence problems.

One effective tool for this kind of analysis is the attention mechanism which has been
widely studied for numerous computer vision tasks [2, 17, 34, 50]. In particular, [10] pro-
posed an attention model that combines the score maps from multiple scales for semantic
image segmentation. Despite its success to robustly segment semantic objects with different
sizes, the proposed attention model is not designed to optimize for the spatial accuracy of
visual correspondences. Also, as a late-fusion step that combines multi-scale score maps,
the attention model cannot be used to derive a scale-resilient feature space to provide the
similarity measurement for visual correspondence tasks.

In this paper, we propose the AutoScaler, a scale-attention network to optimally com-
bine feature maps from different scales for visual correspondence tasks. Our key insight is
that the trade-off between the spatial accuracy and the discriminative contextual scales of
local features can be explicitly optimized via a scale-attention network to improve visual
correspondence accuracy. Intuitively, in texture-rich area, the network weighs more on the
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fine-scale features to ensure correspondence accuracy while in area with less texture, the net-
work seeks for the features at larger scales for more discriminative contextual information.

Our AutoScaler network consists of a weight-sharing feature network to compute multi-
scale feature maps and an attention network to combine them optimally in the scale space
(Fig. 1). By sharing weights across multi-scale feature network, our system can handle large
scale changes. The attention network alone can be applied to any existing handcrafted de-
scriptors (e.g. Daisy [43]) and improve their performance in visual correspondence tasks.
The full network can be trained end-to-end in a Siamese framework without explicit super-
vision on scale-attention. We demonstrate the effectiveness of the proposed method over
optical flow, semantic correspondence tasks and find it compared favorably with the state-
of-the-art methods. Our method is also able to generate visually interpretable scale attention
maps. In sum, our main contributions are:

e A scale-attention network that optimally combines features from multiple scales in
terms of contextual discriminativeness and spatial accuracy.

e The proposed scale-attention network can be a general performance-improver for ex-
isting hand-crafted descriptors (e.g. Daisy) on visual correspondence tasks.

e Using the off-the-shelf architecture for feature network, our simple approach can
achieve competitive results in challenging visual correspondence benchmarks, espe-
cially in terms of fine-scale correspondence accuracy.

e The resultant scale-attention maps are visually interpretable.

2 Method

In this section, we will elaborate our formulation for the visual correspondence tasks of
interest as well as implementation details to train the underlying models.

2.1 Formulation

We are interested in finding distinctive local correspondence given a pair of related images
I and I'. A typical correspondence problem tackles the problem by computing a similarity
measure s(p;,q;) between a given position p; from the source image and its all possible
matching candidates N, = {q il j=1,..n} in the target image; and choose the most similar
sample. The candidates set N, varies depending on tasks. For instance, we search points
along the epipolar line for stereo matching, within a 2D neighborhood for optical flow, and
within the whole image for semantic matching. Computation of the similarity measure is
typically done by measuring the cost associated with local features located at p and q.

Our general matching scheme is a siamese architecture, where two branch process the
source and target images separately with sharing parameters. In the feature extraction stage,
each image is passed into a scale-attention network, called AutoScaler. AutoScaler firstly
generates a pyramid of input images across different scales as shown in Fig. 1. Each scale
is then passed into a CNN feature net and produces a feature map. The parameters of CNN
feature net are shared, which makes same input image across multiple scales generate cor-
related features. Each scale’s output is upsampled into the original size of the input image,
in order to ensure that the feature maps across scales have the same size. In the meantime,
an attention network is introduced to predict a dense weight map for each point across all
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the scales. The final dense feature is then computed through a weighted sum across all the
scales. Fig. 1 depicts the whole process of the dense scale-aware feature computation.

In the matching stage, after we get the dense feature maps, for each point that we are
interested in from the source image, we extract its corresponding source feature as well as
the features from all the candidate points in the target image. Then an inner-product layer is
used to generate the similarity between the source feature and the target features. Point with
highest similarity is picked as a corresponding point in the target image.

Architecture Both the attention network

and feature network have a fully convo-

lutional network architecture with short- mim
cut connections to generate pixel-wise fea- Resnet Block x5
ture/score map. The CNN feature net P—— (Patams shared i [ Buctivom|
contains five ResNet [23] blocks, each

. . R t Block ReLU
of which contains a conv-batchnorm- Resnet Block esnet Bloc ¥
C
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_BalchNorm
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rameters with the feature net. The final out- (a) Feature net  (b) Attention net  (c) One ResNet block
put is passed through a pixel-wise soft-max

layer to ensure the attention map is between

[0,1] with interpretability. We do not use any pooling or strided convolution to ensure that
feature maps preserve sub-pixel information. The receptive field size is equal to 23 x 23 for
a single scale feature net. In our experiments, the number of filters is 64 (sintel and CUB) or
128 (KITTI). We use 64 filters as example to describe our method in the following.

Input

II*

Decov

2.2 Training

Training data We use the ground-truth pixel-wise correspondence from the dataset to train
our neural network. For each pair of images we pick a subset of corresponding pixel pairs.
For each pair in the target images, we randomly sample some pixels over all the candidates
within the searching range of ground-truth as negative points. This negative sampling is
motivated by the fact that points nearby the ground-truth are most likely to be false positive.
In practice we choose 200 negative samples and this results in 201 candidates for each pair
with one ground-truth for each source point. We extract features from these points, which
results in 64-dimensional source vector and 64 x 201-dimensional target feature.

Loss Through computing the inner product between the source feature and all the columns
in the target feature, we have a 201-dimensional score vector describing the confidence of
each possible candidates to be a correspondent point. Intuitively, we expect the GT corre-
spondent to have higher score while others have lower score. Thus we define our objective to
be the cross-entropy loss between the GT correspondence and the matching score, normal-
ized by softmax and minimize the loss with respect to the parameters of our neural networks.

Optimization We train our network using stochastic gradient descent with Nesterov mo-
mentum. The momentum is set to be 0.9 and the initial learning rate is set to be 0.002. A
learning rate policy is set to reduce the learning rate by a factor of 5 for every 50K iterations.
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Figure 2: The dense optical flow pipeline. From the input image (a), an initial noisy flow is
estimated (b), followed by outlier removal (c) and interpolation using [37] (d). (Sec. 3.1.1)

(a) Input image (b) Initial noisy estimation (c) Outlier removal (d) Final flow

2.3 Discussions

Receptive field size The advantage of the proposed model is its content-aware receptive
field size. The attention model adjusts the receptive field according to the image content
through weighting each scale. Given an image pyramid with smallest scale x4, our algorithm
is able to produce a maximum receptive field with 23 x 4 = 132. This approach introduces
more context into the matching scheme. It would greatly help resolve ambiguity because
of repetitive, smooth textures, or matching along edges. On the other hand, in regions with
unique structures, it learns to focus on finer scales with a smaller receptive field, excluding
unnecessary context. See Fig. 4 for the visualization of the scale-attention maps.

Extensions to hand-crafted features Our AutoScalar model can be extended to hand-
crafted features, such as SIFT and DAISY. To be specific, instead of using a neural network
to compute multi-scale features, we can generate multi-scale features through changing the
hyper-parameters of SIFT and DAISY. Then an attention net is trained to combine these
multi-scale features in a content-aware manner towards a better performance.

3 Experiments

This section presents the result of the proposed scale-attention network on both geometric
matching and semantic matching tasks. For geometric matching task, we select the challeng-
ing optical flow benchmarks MPI-Sintel [9] and KITTI [16] for evaluations. The semantic
matching experiment is conducted over the Caltech-UCSD Birds 2011 dataset [45]. We
compare with the state-of-the-art systems, as well as visualize the generated attention maps
and discuss their interpretability as shown in Fig. 4.

3.1 Evaluation on Optical Flow
3.1.1 MPI-Sintel Optical Flow Benchmark

We first evaluate our method on the challenging MPI-Sintel optical flow benchmark [9],
which consists of more than 1200 pairs of training images and 1500 pairs of testing images.
It is a synthetic dataset with extremely large motion from both cameras and objects with
various appearance changes due to motion blur, illumination and non-rigid deformation. The
benchmark error metric is end-point-error (EPE), which is the average euclidean distance
between the flow fields. We refer to EPE-matched and EPE-unmatched as average end-
point-error over regions that remain visible in adjacent frames and average end-point-error
over regions that are visible only in one of two adjacent frames. And EPE-all is the end-
point-error over all the pixels.

During training, we split the 22 training sequences into training (1-16) and validation (17-
22). For each pair of images, we randomly sampled 10K local corresponding pairs, and for
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Method EPE-m EPE-u EPE-a Method Fl-bg Fl-fg Fl-all
DCFlow [49] 2.283 28.228  5.119 FlowNet2 [24] 10.75% 8.75% 10.41%
FFCNN [6] 2.303 30313 5.363 SDFT [3] 861 % 2669% 11.62%
MRFlow [48] 2.818 26.235 5376 SOF' [38] 1463% 27173% 16.81 %
DeepDisFlow [19] 2.623 31.042 5728 CNN-HPM[5] 1833% 2496 %  19.44%
FullFlow [11] 2.684  30.793  5.895 FullFlow [11] 23.09%  30.11% 2426 %
PatchCollider [46] 2.938 31.309  6.040 EpicFlow [37] 2581 % 3356% 2710 %
EpicFlow [37] 3.060  32.564  6.285 DeepFlow2 [47] 2796 % 3528 % 29.18 %
DeepFlow2 [47] 3.093 38.166  6.928 PatchCollider [46] | 30.60 % 33.09% 31.01 %
Ours 2.569 34656  6.076 Ours 2185% 31.62% 25.64 %

Sintel Results KITTI Results

Table 1: Optical flow results on both Sintel and KITTI benchmarks. Despite the simplicity
of our method, we achieve competitive results on Sintel and KITTI. See Sec. 3.1 for detail.

Ground-truth f AD - -
DiscreteFlow J E - -
i ¥ = ] ]
B 8 e ] ]

S " ]

Figure 3: Qualitative results on Sintel optical flow. Our method recovers precise motion of
fine structures, like the butterfly, pole and legs as highlighted in boxes. See Sec. 3.1.1.

each pair, we randomly selected 200 negative samples within the motion range [—210,200].
During testing, we use a simple pipeline to compute the dense flow. First, We com-
pute dense features for both source and target images. For each feature from the source
image, we compute the inner-product over all the local features from the target image within
the motion range limit [—240,240] x [—240,240] and pick the one of the highest score.
This produces an initial estimation of dense flow with outliers. We then remove outliers
through forward-backward consistency check: for each pixel p, we check the condition
[lWbackward (P + Qtorward (P) ) + Wtorward (P)|| < £, where Upyckwara 18 the estimated backward op-
tical flow, Wgorwarq 1S the forward optical flow field and ¢ is the threshold we remove outlier
motion estimations. In practice t = 3 is used. After removing outliers, we interpolate the
missing pixels using Epicflow [37]. Fig. 2 illustrates our pipeline of dense optical flow.

Quantitative Results We submit our results to Sintel benchmark and compare it against
the top-ranked published systems. We focus on the final benchmark, which is more chal-
lenging due to the presence of motion blur and various shading and reflectance changes. Ta-
ble. 3.1.1 shows the quantitative results against the competing systems. Our method achieves
third best on the EPE-matched metric, and comparable on EPE-all metric against all com-
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Dataset | Daisy Concat Daisy CNN [31] Single  Concatx2  Sumx2 Oursx2  Oursx4

Sintel 56.79% 78.30% 86.02% 86.95% 87.65% 87.92%  89.12%  91.84%
KITTI 73.63% 75.67% 90.10% 90.07% 88.04% 89.60%  92.06%  91.78%

Table 2: Top-1 accuracies of variant architectures on Sintel and KITTI (See Sec. 3.1.3).

peting systems. Our relative large EPE-unmatched number is due to the simplicity of our
interpolation scheme using Epicflow compared to the time-consuming comprehensive MRF
post-processing step to propagate the estimated flow to occluded regions as employed by
many competing systems such as Flowfields [4], DiscreteFlow [19, 32] and Fullflow [11].
In principle, this heavy MRF post-processing step can also be used in our system to further
boost EPE-unmatched performance if its significant overhead in running-time is acceptable
as it is the bottleneck for many methods. Our method takes 0.5 seconds for computing fea-
tures, 2 minutes for initial matching and 2.5 seconds for Epicflow interpolation on Sintel.
All timings are done on a machine with 3.2GHz CPU and M6000 GPU.

Qualitative Results Fig. 3 demonstrates more qualitative results for visual comparison.
Thanks to the scale-attention scheme, our method has the best capability in capturing small
objects with large motion, as shown in the figure. This is because our method has both large
receptive field and sub-pixel accuracy.

3.1.2 KITTI Optical Flow Benchmark

We also report the benchmarking result over KITTI Optical Flow 2015 dataset [16]. This
benchmark includes 200 image pairs for training and 200 image pairs for testing. During
training, we separate the training dataset into 160 pairs as train and 40 pairs as validation.
Following the similar experiment configuration in Sec. 3.1.1, we sample 10k local corre-
spondences from each image pair and for each pair 200 negative samples. During testing,
we follow similar pipeline described in Sec. 3.1.1 to generate dense optical flow with our
network as shown in Fig. 2.

Quantitative results We submit our results to KITTI optical flow benchmark. The results
are shown in Table. 3.1.1. The metrics for KITTI benchmark Fl-bg’, FI-fg’ and *Fl-all’ rep-
resent the outlier percentage on background pixels, foreground pixels and all pixels respec-
tively. Note that KITTI is a dataset captured in a special driving scenario, where the motion
is mainly due to the ego-motion of the camera plus rigid motion of the cars in the scene. Thus
dense flow approaches that exploit the semantics of the scene objects as well as the epipolar
constraint would achieve significant improvement [3, 38]. Apart from those methods, our
approach achieves competitive results against other methods which utilize generic matching
techniques.

3.1.3 Evaluation of Architecture Design

We compare Top-1 matching accuracy of our proposed architecture to many of its variants on
both Sintel and KITTI validation sets, as shown in Table. 2. All the variant architectures are
trained under the same multi-class Siamese configuration with softmax loss. “Daisy Concat”
and “Daisy” refer to the variants where feature network is replaced with Daisy descriptor
[43] on two scales and then combined using simple concatenation and our attention network
respectively. “CNN” refers to a competing architecture [31] which includes CNN-31x31:
a nine-layer fully convolutional network. Similar to our approach, [31] also adopts softmax
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s scale 0.5 scale 1 scale 1.5 I scale 2
Figure 4: Visualization of scale-attention maps. Four scales are shown for Sintel dataset
(top) and two for KITTI (bottom). Scale values indicate down-sample factors of the input
image to the feature network (0.5 being the up-sampled finest scale and 2 the down-sampled
coarsest). Note that the attention network weighs more on fine scale for texture-rich regions
and gradually moves to larger scales in regions with less texture. See Sec. 3.1.4 for details.

loss for training and the architecture does not include pooling or stride convolution. “Single”
refers to our proposed architecture with one single scale. “Concatx2” and “Sumx2” refers
to our proposed architecture with two scales and then combined using simple concatenation
and summation respectively. “OursxK” is our proposed architecture with K scales. In this
experiment we compare the performance between two and four scales.

As shown in Table 2, our proposed architecture outperforms all variant architectures. Es-
pecially, with the attention mechanism, the matching performance is better than simply con-
catenating or summing two scales. It is also worth noting that our attention architecture can
be applied to improve hand-crafted descriptors like Daisy [43] for the visual correspondence,
as we observe noticeable performance improvements with attention mechanism enabled ver-
sus simple concatenation of multi-scale features. Moreover, for Sintel dataset, our four-scale
variant outperforms the two-scale one while for KITTI their performances are similar. This
seems to do with the dataset bias: KITTI has fewer textureless regions that take advantage
of features at larger scales.

3.1.4 Visual Interpretation of Scale Attention Maps

To visualize our attention maps, we pick representative frames from Sintel and KITTI datasets
and colorize their attention weights at different scales as shown in Fig. 4. Note that our
trained attention network weighs more on fine scales for texture-rich regions (e.g. foreground
subjects, roads) and gradually moves to larger scales in regions with less texture (e.g. back-
ground objects, sky). This highlights our attention network’s ability to find optimal trade-off
between discriminative contextual scale and spatial accuracy for visual correspondence.

3.2 Evaluation on Semantic Matching

Unlike geometric matching tasks, such as optical flow, the semantic matching aims at finding
correspondence that represents coherent semantic meanings, regardless whether these key-
points are similar in appearance, efc.. We perform the semantic matching experiments on the
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Figure 5: Qualitative and quantitative results on CUB semantic matching. Our method is
able to capture semantic meaningful matching across species and poses, with better fine-
scale accuracy compared to competing methods. See Sec. 3.2 for more details.

CUB-200-2011 dataset, which contains 11788 images of 200 bird categories, with 15 parts
annotated. We follow the experiment configuration of [25], which utilizes the training set
to extract training pairs and 5000 pairs images from the validation set as testing pairs. We
crop each image with the bounding box of birds as pre-processing step. For each training it-
eration, we randomly pick two image pairs and use all the corresponding keypoints between
them as positive samples, and select random negative samples over the whole target images.

Metric We evaluate the accuracy of matches with the percentage of correct keypoints
(PCK@q). A match is considered as correct if it lies with oL pixels of the ground-truth
correspondence, where L is the mean diagonal size of the image pairs. We follow the con-
figuration of [25] and discard all the invisible keypoints when computing the metric. We
strictly follow UCN and WarpNet’s setting without the post-processing in Sec. 3.1.1.

Quantitative result We compared against the recent state-of-the-arts algorithms on CUB
matching dataset, namely WarpNet [25], Universal correspondence network [13], and DSP
[21], along with two widely used features including VGGnet [39] and SIFT [30]. Fig. 5
depicts the PCK metric along different threshold «. From this figure we can see that our
method outperforms all the competing algorithms when o is small, which suggests the high-
est fine-scale accuracy. When the threshold o becomes large, our method ranks second,
following UCN [13]. This suggests that AutoScaler better captures finer details while in
the meantime performs competitively in reasoning the semantic meaning of the local parts.
Fig. 5 also shows the examples of the qualitative matching results. Our method performs
well in most cases across various poses, species and scales. Most failure cases are due to the
ambiguity in left and right feet, which could be improved by a global structure prior.

4 Conclusion

We propose AutoScaler, a scale-attention network that optimally combines dense feature
maps from multiple scales for contextual discriminativeness and spatial accuracy. We show
that our simple approach can achieve competitive results in challenging visual correspon-
dence benchmarks. The scale-attention network can be used as performance-improver for
existing handcrafted descriptors and provide visually-interpretable scale-attention maps.
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