
Pose Pooling Kernels for Sub-category Recognition

Ning Zhang
ICSI & UC Berkeley

nzhang@eecs.berkeley.edu

Ryan Farrell
ICSI & UC Berkeley

farrell@eecs.berkeley.edu

Trever Darrell
ICSI & UC Berkeley

trevor@eecs.berkeley.edu

Abstract

The ability to normalize pose based on super-category
landmarks can significantly improve models of individual
categories when training data are limited. Previous meth-
ods have considered the use of volumetric or morphable
models for faces and for certain classes of articulated ob-
jects. We consider methods which impose fewer represen-
tational assumptions on categories of interest, and exploit
contemporary detection schemes which consider the en-
semble of responses of detectors trained for specific pose-
keypoint configurations. We develop representations for
poselet-based pose normalization using both explicit warp-
ing and implicit pooling as mechanisms. Our method de-
fines a pose normalized similarity or kernel function that
is suitable for nearest-neighbor or kernel-based learning
methods.

1. Introduction
Recognition of fine-grained categories is a significant

challenge for contemporary computer vision systems; such
categories may be distinguished by relatively localized
characteristics which may be difficult to learn from limited
amounts of training data in a conventional 1-vs.-all learn-
ing framework. When a set of related classes share cer-
tain structure it is possible to learn pose estimators from
data pooled across the several categories; in general terms,
the ability to normalize for pose based on a super-category
landmark or pose detector can significantly improve recog-
nition of individual categories with limited amounts of
training data.

Approaches to pose normalization have long been used
in face recognition [9, 18]; for convex objects pose can be
modeled as a rigid motion optionally with a non-rigid de-
formation. When the more general class of articulated ob-
jects is considered, the problem of pose estimation becomes
more complex. Recently landmark template or “poselet”
based pose estimation has been a topic of increasing inter-
est [7, 5, 4]; In our previous work [12], we exploited such
models to construct pose-normalized descriptors that oper-

Figure 1. Limitations of Head/Body Volumetric Representa-
tion. A volumetric representation (red ellipsoids) such as that pre-
sented in [12] will be insufficient to determine which of the two
birds in flight the perched bird matches. The wings and tail (both
color and shape) carry nearly all of the discriminative appearance
information, and could be modeled just fine with a poselet ensem-
ble (blue dashed boxes). Can you tell which bird it matches?

ated on articulated objects. However, this model required
the instantiation of 3-D volumetric primitives to form a rep-
resentation, which is costly to obtain manually and can be
problematic in some cases (see Figure 1).

In this paper we also tackle the issue of geometric nor-
malization for sub-category recognition but advocate for a
2-D rather than 3-D representation. We presume a detec-
tion model in the style of [7, 5, 4], which results in a set
of poselet-style activations on a given image, and explore
the issue of how such sets of detected features should be
best compared between two images. We develop similarity
functions which take poselet activation “stacks” as input,
and are suitable for use in nearest-neighbor classifiers or as
SVM kernels.
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Figure 2. Comparing Poselet Appearances. For subcategory
recognition using discriminative classifiers (or nearest-neighbors)
we need a mechanism to compare sets of poselets. Three different
poselets may be actually covering the same underlying part in dif-
ferent pose; we therefore need a way to compare appearance based
on those poselets. Can you tell which two birds are the same?
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The key idea behind our similarity function is illustrated
in Figure 2, where three different poselets are illustrated fir-
ing across different bird instances. The right two images
depict instances of the same subcategory; a whole image
(or whole-bird) comparison, e.g., using spatially pyramid
matching kernel or bag or words, would likely miss the sig-
nificant correspondence in the appearance of the two birds.
However, by exploiting knowledge that the two poselets
in the example are actually overlapping the same part (or
parts), we can define a comparison function that explicitly
compares descriptors formed over the corresponding pose-
let regions in the two images.
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Figure 3. Image Similarity by Poselet Set Similarity. We pro-
pose to measure image similarity by defining a series of poselet-set
similarity measures. Instead of considering image statistics glob-
ally within the image, we advocate the use of poselets as a means
to tie the object appearance within image patches to that of se-
mantically similar parts found in the training data. This effectively
provides a high degree of pose invariance.

We define and compare a series of poselet-set similar-
ity measures, or kernels. One intuitive idea is to use a
greedy match kernel with explicit geometric warping based
on landmark correspondences, constructing a match ker-
nel that greedily estimates a minimum cost correspondence.
This method is elegant, but computationally intractable in
most situations. We then consider representations which
form a fixed length vector: one variant attempts to normal-
ize within the representation per example using a warping
function, while a simpler model pools descriptors over cor-
responding poselets. Our pooling scheme establishes corre-
spondences between poselets based on the degree of over-
lap each poselet exhibits: conceptually, the goal is to pool
descriptors for poselets that actually are covering the same

1Images in Figure 1 (CC) Jeff Whitlock, Ingrid Taylor and Bill Bouton
(http://goo.gl/Kpw4z, http://goo.gl/wf4rO, and http:
//goo.gl/PtNFS respectively).

part or parts.
We evaluate our methods on the recently introduced

CUB bird dataset, comparing recognition performance of
our various descriptors given noisy detections. Overall, we
find a significant boost from our proposed pooling architec-
ture when compared to baseline methods that do not nor-
malize for pose. Our results demonstrate that effective pose
normalization is possible even for classes that do not ad-
mit a robust volumetric description. While our experiments
have been limited to the bird domain, we expect our pose
pooling kernels to be useful in a variety of other recognition
tasks where there is considerable pose variation yet limited
training data per category.

2. Background
Previous work on subordinate categorization includes

approaches that learn discriminative image features. Such
domains that have been previously considered include: sub-
ordinate categories of flowers (Nilsback and Zisserman
[25, 26], which introduced the 17- and 102-category Ox-
ford Flowers datasets), two subclasses for each of six basic
object categories, e.g., Grand vs Upright Pianos, (Hillel et
al. [2]), and subordinate categories of stonefly larvae, which
exhibit tremendous visual similarity (Martı́nez-Muñoz et al.
[23]).

A significant literature seeks to leverage similarities
between categories to improve recognition performance.
Methods which exploit class taxonomies or hierarchies
range from constructing latent topic hierarchies [3] to shar-
ing appearance [16, 27], classifiers [1] or visual parts [28]
to constructing efficient classification trees [17, 22], and
other references too numerous to mention here. Each such
approach provides insights or advances toward efficiently
solving basic-level classification. These unsupervised ap-
proaches, however, cannot be readily applied to the prob-
lem of distinguishing closely-related subordinate categories
which, by definition, share a common set of parts and yet
can have both subtle and drastic appearance variations.

Several authors have investigated attribute-based recog-
nition, which are highly relevant for the general problems
of subcategory recognition, see for example [10, 11, 19,
20, 33]. These techniques often learn discriminative mod-
els from attribute-labeled training data and subsequently ap-
ply the learnt models to estimate the appropriate visual at-
tributes present in a test image. While attribute-based mod-
els are suitable for addressing the one-shot learning problem
(previously considered in [13, 14, 15, 24] among others),
they typically focus on relatively coarse grained attributes.
Our focus is on representations suitable for the fine-scale
distinctions needed for subordinate categorization.

The work of Branson et al. [8] proposes improving
recognition accuracy by interleaving computation with at-
tribute queries made to a human subject. Their method eval-



uates recognition in a large 200-category bird dataset [34]
which also the subject of our experimentation.

We base our method on the poselet framework, as de-
scribed in [7, 5], see also the related technique of [4]. We
explore the idea of pose-normalization for sub-category ap-
pearance descriptors in this framework, a topic previously
considered in [12]. The paradigm explored there was to em-
ploy volumetric pose normalization using 3-D primitives,
following the line of work established by [9, 18] for the
case of face recognition. However, in contrast to [12], we
explore a method that has fewer representational assump-
tions: in particular our method does not employ volumetric
representations, and therefore is applicable to object classes
which do not strictly admit such a model. Additionally, and
more significantly, our method does not require 3-D pose
annotation, as does the method in [12]. Recent work in
the poselet community has considered the task of activity
recognition and attribute description [6]; this work com-
putes feature vectors comprised of poselet detector activa-
tions. In contrast, our method (and that of [12]) forms de-
scriptors over the localized poselet detections; the contri-
bution of this paper is to define and analyze various 2-D
schemes for comparing sets of poselet-based descriptors in
such a way that poselets which correspond to the same un-
derlying part or region of an object are aligned so that the
corresponding descriptors can be effectively compared.

3. Pose Normalization Kernels
Given an ensemble of learned poselets, poselet detection

methods (reviewed above) can infer a set of detections for
each image. Our goal is to use these detections to compute
sub-category level descriptors that are effective at discrimi-
nating, e.g., individual species. In particular, we would like
to explore schemes for comparing the pose-normalized ap-
pearance of two detected instances of a particular poselet
model. We compute descriptors at each poselet activation,
and consider various strategies for comparing these sets of
descriptors in the following subsections.

In order to use discriminative classifiers for subcategory
recognition, we therefore need a mechanism to compare
two sets of poselet detections. The poselet detection pro-
cess provides estimates of part locations; our conjecture is
that comparing the image descriptors which correspond to
the same physical part (or collection of parts) will improve
classification performance when compared to using just the
whole image without any pose normalization. In general,
sub-category recognition depends on the subtle appearance
variations of some parts: two different poselets may be ac-
tually covering the same underlying part just in different
poses or views, so it is desirable to have a similarity function
which can properly relate descriptors from various pose-
let detections when comparing sets of responses. We con-
sider various approaches to this problem below, including

schemes which compute a poselet to poselet normalization
via geometric warping prior to comparing descriptors, and
those which pool descriptors across corresponding (seman-
tically similar) poselets.

To directly apply nearest neighbor and kernel-based clas-
sifiers to our sub-category recognition problem, we define
kernel functions based on sets of detected poselets. These
functions can be used e.g., in SVM or Gaussian Process
based classifiers or regression schemes.

3.1. Preliminaries

Each image Xi has a set of poselet activation windows
with the corresponding activation scores ti = {ti1, · · · , tiN}
where N is the number of poselets. Suppose we extract a
d-dimensional image descriptor φ(Xi

u) from each poselet
u’s activation window, such as bag of words SIFT or spatial
pyramid histogram. Then each image can be represented
as Xi = {ti1, ti2, · · · , tiN , φ(Xi

1), · · · , φ(Xi
N )}. Also, be-

tween each pair of poselets u and v, we compute the trans-
formation function Tuv from poselet u to poselet v and the
confidence score λuv of this transformation.

The affine transformation function Tuv is computed
based on the keypoints locations of two poselets. If two
poselets have less than three common keypoints, there
would not be an appropriate affine transformation between
the two sets of keypoints. In that case the Tuvis set to be
empty and the confidence score λuv is set to be zero. Oth-
erwise, we compute the affine transform Tuv from the key-
point sets of poselet u to keypoint sets of poselet v and the
confidence score is set based on the number of overlapping
keypoints, i.e. λuv = K

min{Ku,Kv} , where K is the number
of the common keypoints and Ku is the number of key-
points of poselet u.

Ideally, we first consider a match kernel in the spirit of
[32], which would compare two sets of poselet activations
by transforming each poselet detection in one image to an-
other poselet detection in a second image, and then com-
paring the corresponding image descriptors. A greedy warp
match kernel would be defined as follows

KG(Xi, Xj) =∑
u,v

tiu · tjv ·
1
2
{λuv · K̃(φ(Tuv(Xi

u)), φ(Xj
v))

+λvu · K̃(φ(Xi
u), φ(Tvu(Xj

v))} (1)

where K̃ is the base kernel between aligned poselets,
φ(Tuv(Xi

u)) is the image descriptor after warping the acti-
vation window from poselet u to poselet v; taking the aver-
age of both warping directions makes the kernel symmetric.
The weights λuv and λvu are the confidence of the transfor-
mation, based on the number of overlapping points.

As described in more detail below an appropriate kernel
function for the aligned poselets could be a simple linear



kernel or a nonlinear kernels such as the chi-squared dis-
tance, computed between histogram-of-gradient descriptors
extracted at each detected poselet location.

With this kernel, the similarity between each pair of im-
ages is just the weighted sum of similarities between the
pose-normalized image descriptors. This kernel function
can be effective, but suffers high computational costs when
the number of detected poselets is large. It takes O(n2N2)
time where n is the number of images and N is the number
of trained poselets. This method therefore may not scale
well in cases where large datasets are involved. In the fol-
lowing sections we therefore consider intermediate fixed-
length representations, yet which employ warping or more
directly, pooling to align corresponding poselets.

3.2. Warped Feature Kernel

To overcome the quadratic complexity of a naive match
kernel which compares sets of detections explicitly, we con-
sider fixed-length representations that capture the set of
poselet views of an object. As this defines a vector-space, it
can be directly used as a feature vector in a e.g., chi-square
or a radial-basis-function (RBF) kernel.

The most straightforward representation simply concate-
nates the image descriptor of each poselet to a long fixed
length feature vector. This trivially represents the image’s
appearance under different poses, and serves as a baseline
method. However, with no geometric normalization, this
feature vector will perform poorly unless available training
data cover all possible poselet activations for all classes.

Following the notation above, the simple fixed length
representation is

Ψ(X) = [t1 ·φ(X1), · · · , tu ·φ(Xu), · · · , tN ·φ(XN )] (2)

where φ(Xu) is the image descriptor of poselet u’s activa-
tion window and tu is the activation scores. This feature
vector has length Nd where d is the dimension for image
descriptor. Figure 4 illustrates this method.

...
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Figure 4. Fixed-length representation. Concatenated descriptors
without warping.

A significant issue with this feature representation is that
the feature vector is sparse as only a small number of pose-
lets are detected in a typical image (∼ 10 in our experiments
on the data described below). Also, the representation may
be redundant, since distinct poselets are often overlapping

and therefore are describing the same object region in dif-
ferent poses and views. To overcome this, we consider ways
to pose-normalize this representation.

Our first approach follows in the spirit of the fixed-length
representation considered above, and explicitly warps pose-
let appearance within the fixed-length representation to fill
in poselets that have not fired on an image. Effectively,
this fills in blank feature blocks in the fixed length repre-
sentation. As an example, suppose poselet #19 and pose-
let #23 both capture the left side of the bird’s head with
only slightly different orientation. For one image showing
the left side of a bird’s head, it might just fire poselet #19,
whereas in another image, poselet #23 would fire. Both
poselets represent the same part of the bird (the left side
of the head) and it will improve the classification if this cor-
respondence can be captured in the feature vector represen-
tation.

Thus, for each φ(Xu) in the Ψ(X) in Eq. 2 that has not
been detected but for which there exists another detected
poselet which is similar enough to it, we use the image
descriptor of the fired poselet and warp it to the non-fired
poselet. With this approach the feature representation is

Ψwarp(X) = [t1λp1φ(Tp1(X1)), · · · , tuλpu
φ(Tpu

(Xu))
· · · , tNλpN

φ(TpN
(XN ))] (3)

where pu is the index of most similar fired poselet that
should be warped to the non-fired poselet u. If this poselet
already fires, it sticks to Eq. 2 and if there is no appropri-
ate fired poselets to warp, the corresponding feature for the
non-fired poselet is set to zero. We use the residual error
after transformation as the measurement of two poselets’
similarity. Figure 5 illustrates this method.

...
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Distance(       ,       ) = ?

Figure 5. Warped Feature Kernel. Concatenated descriptors with
warping.

3.3. Pooled Feature Kernel

The intuition behind the fixed length warping kernel is to
have a pose-normalized way to compare images which have
the correspondences in different parts. A further extension
of this model is to group or pool poselets which represent
the same underlying part into a cluster of parts.

By design, groups of learned poselets exhibit redun-
dancy: several poselets will represent the same part or parts



in slightly different configurations with respect to the cam-
era. For recognition, it is desirable to group them together
when comparing representations. We therefore consider
a pooling stage on top of our base representation, which
groups together the descriptors computed on poselets that
are identified as being in correspondence. This strategy is
particularly effective for additive kernels such as bag-of-
word representations formed over local features, but can
also work to a degree on non-additive representations.

We consider two criteria for grouping the poselets into
clusters, each containing poselets that representing the same
part of an object. One could treat this in a fully supervised
fashion, based on provided part annotations; however, we
chose to consider an unsupervised approach that discovered
clusters in a data-driven fashion.

As illustrated in Figure 6 our pooling scheme forms a
cluster feature vector, whose length is equal to the number
of clusters times the length of the poselet descriptor. For
each cluster, the descriptors are pooled across the poselets
assigned to the cluster, producing a single descriptor for the
cluster. The final cluster feature vector is the concatenation
of the cluster descriptors, as given in the following equation:

Ψpool(X) = [avgi∈C1Ψwarp(i), · · · , avgi∈CP
Ψwarp(i)]

where Ci is the i-th poselet cluster.
Each poselet cluster should ideally correspond to a co-

herent part or part group and all the poselets within each
group are similar to each other. Using such a clustering
scheme, the output pooling image descriptor is much more
representative in describing the image features of different
parts.

We compute poselet clusters using a greedy clustering
scheme, which first forms a graph over the learned pose-
lets with edge distances computed to reflect a measure of
inverse poselet correspondence. We have used two different
measurements for edge distance:

1. warp distance — using the residual error of the affine
transformation between keypoints corresponding to
two poselets.

2. keypoint distance — 1/λ as defined above, based on
the number of keypoints common to two poselets.

which lead to distinct clustering results. Below we com-
pare the two pooling results in terms of classification per-
formance. We randomly pick poselets as candidate cluster
centers, grouping together a sufficient number of neighbors
under one of the two criteria above. We repeat until all pose-
lets are iteratively assigned to a cluster center. Specifically,
the clustering algorithm first randomly picks one poselet as
the cluster center then groups the rest of poselets which have
a distance within a set threshold. Then it iteratively picks
another unselected poselet as the new cluster center and

repeats the process until there are no good clusters. This
method has the benefit of not requiring knowledge of the
number of clusters a priori. Other clustering schemes may
prove superior to this greedy method and will be an area
considered in future work. The method described above
worked well in practice.
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Figure 6. Pose Pooling Kernel. Corresponding poselets are
grouped.

4. Experiments

We now present experiments validating the effectiveness
of our approach for fine-grained object categorization.

4.1. Dataset

Following [8] and [12], we conduct experiments on the
200-category Caltech UCSD Birds Dataset [34], one of the
most complete datasets for fine-grained object categoriza-
tion. We utilize the extended version of the dataset that was
recently released [31] which provides approximately 60 im-
ages per category, twice what the initial dataset provided.

We use this dataset primarily because of the 15 part an-
notations (e.g. beak, crest, throat, left-eye, right-wing, nape,
etc.) that it provides per image/object. These part an-
notations are important for our approach as they facilitate
the generation of poselets following the 2D keypoint-based
paradigm presented in [5].

4.2. Implementation Details

To improve the clarity of the earlier technical sections
(Sections 3.2 and 3.3), we omit implementation details that
are nonetheless important to the experiments. These details
include the computing of canonical poselet activations per
image and the descriptors used to encode activation patch
appearances.

4.2.1 Poselet Activations

In an effort to evaluate the subcategory classification per-
formance independent of detection errors, we implement a
poselet-style detector and train several templates using the
training data, finally computing “ground truth” activations
on the test set. Each poselet detector is trained as follows:



1. A training image is selected at random and a rectan-
gular window overlapping a subset of the object’s key-
points is randomly chosen.

2. A selection of similar images from the training set
(those with locally similar keypoint configurations) is
collected.

3. Distributions for the relative location of each relevant
keypoint are computed and stored.

Once a large set of such poselets (1000 in our exper-
iments) is trained, we use a beam-search based selection
strategy to prune this large randomly generated set. The
large set will be heavily biased toward the frequently occur-
ring poses. The selection criteria are defined such that the
pruned poselet set better covers the full pose space of the
training set. Without this step, there will be images (both
in the training and presumably the test sets) there will be
images with a disproportionately small number of poselets
firing, simply because the subject is in a less frequently ob-
served pose.

Next, we use this smaller poselet set (100 in our case)
to calculate a set of “ground truth” activations for each test
image, accomplished by comparing each poselet’s keypoint
distributions with the locations of the respective keypoints
(if present) in the test image. This comparison is performed
by finding the best procrustean fit for the keypoints shared
by a given trained poselet and a given test image. As pose-
lets are not invariant to orientation, we only declare acti-
vations as valid if the transformation produced by the pro-
crustean analysis has a small deviation in orientation (we
use a tolerance of ±10◦).

4.2.2 Patch Appearance Descriptors

We consider a few different measures for describing the ap-
pearance of the image patch underlying a given activation.
Ultimately, the descriptors are concatenated into a single
vector per image and are passed to a support vector ma-
chine (SVM) for classification (using a 1 vs. all policy). We
consider the following two appearance descriptors.

• Bag of Words (BOW-SIFT) - This descriptor is gener-
ated by densely computing SIFT features (at multiple
scales) and vector quantizing them against a codebook.

• Pyramidal Histogram of Words (PHOW) - Following
Spatial Pyramid Match [21], the SIFT features are
quantized and then binned into regions defined by a
spatial subdivision pyramid.

In our experiment, we use the bag of words (BOW-SIFT)
and pyramidal histogram of words (PHOW) as our appear-
ance features. Specifically, we use the VLFEAT toolbox
[29] to compute the patch descriptors with a codebook of
1024 elements. For the spatial pyramid, following standard

convention we subdivide the image at three different levels
of resolution. For each level, we concatenate the histogram
of each spatial bin and the weight for the lth pyramid level
is set to 1

2(L−l) where L is the the total number of layers (3
in our experiment). Given the activation windows and im-
age descriptors, we can compute the warped and/or pooled
features as discussed in Section 3. Then, we use SVMs for
classification and using either a linear kernel or the efficient
additive kernel map in [30] for χ2 and Intersection kernels.

4.3. Results

We now present our experimental evaluation and begin
by defining a baseline for comparison. As noted previously,
there are three approaches (to our knowledge) that have pre-
sented categorization results on the CUB200 dataset. The
authors of [8] leverage attributes provided by a human-in-
the-loop to supplement a machine vision back end for clas-
sification. In [12], categorization is performed in a pose-
normalized space on a two family (14-category) subset of
the full CUB200 dataset. The authors in [35] proposed a
fine-grained classification approach using random forests
with discriminative decision trees, tested on all 200 cate-
gories. We evaluate our methods in both the 14 category
and 200 category settings. We use the VLFEAT toolbox
[29] as a baseline, which applies a linear SVM to vector
quantized SIFT features from within the bounding box.

Figure 7 depicts the confusion matrices for categoriza-
tion on these two families using a linear SVM with 15 train-
ing examples per category (plus their reflections to yield 30
training examples). The warped feature kernel uses a linear
SVM to classify the features described in Section 3.2 while
the pose pooling kernel follows the method in Section 3.3
also using a linear SVM. Both feature kernels have the same
bag of word SIFT descriptors used by the baseline method.
The confusion matrices show that both the warped feature
kernel and the pooled feature kernel improve the baseline
methods of using just the bounding box image. From the
additional results presented in Table 1, we find that for both
training settings (N = 15 and N = 30 training images), the
warped feature kernel using linear SVM improves both and
pose pooling kernel outperforms the warped feature kernel.
Warping poselets also helps the pooling stage and both clus-
ter schemes work well and warping distance based cluster-
ing works slightly better than overlapping keypoints based
clustering.

We also apply a spatial pyramid to the quantized SIFT
features; the results are shown in Table 2. Here we observe
that for the two different training settings, pose pooling ker-
nels outperform the baseline and the χ2 kernel usually out-
performs the intersection kernel. All these results are simi-
lar to the previous results using BOW-SIFT features, but us-
ing the spatial information in the image descriptor improves
the categorization results.
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Figure 7. Confusion matrices on 14 categories across two bird families (for comparison with [12]) using 15 images per training category.
All three methods a linear SVM for classification; the pose pooling kernel uses the distance-based clustering described in section 3.3.

Method Linear Kernel χ2 Kernel Linear Kernel χ2 Kernel
(N=15) (N=15) (N=30) (N=30)

Baseline (VLFEAT) 29.73 36.61 33.39 42.68
Fixed-length Feature(no warping) 33.61 36.10 45.08 46.10
Warped Feature Kernel 36.33 31.85 40.71 42.32
Pose Pooling (warping, distance) 40.60 43.35 44.61 52.44
Pose Pooling (warping, keypoints) 39.79 41.40 46.12 52.75
Pose Pooling (no warping, distance) 32.24 42.25 40.40 51.78
Pose Pooling (no warping, keypoints) 31.82 42.22 39.77 52.72

Table 1. Mean precision on the 14 categories from [12] using a bag of words model on SIFT features. N denotes the number of examples
used for training per category and two different kernels (linear and χ2) are used for the SVM. The distance/keypoints and warping/no
warping refer to the distance- or keypoint-based pooling and pooling with or without descriptor warping.

Method Intersection Kernel χ2 Kernel Intersection Kernel χ2 Kernel
(N=15) (N=15) (N=30) (N=30)

Baseline (VLFEAT) 40.06 41.03 48.61 49.11
Pose Pooling (warping, distance) 45.36 46.91 54.08 55.87
Pose Pooling (warping, keypoints) 45.76 45.98 56.76 57.44
Pose Pooling (no warping, distance) 43.73 44.10 54.09 55.09
Pose Pooling (no warping, keypoints) 43.22 43.88 55.00 54.99

Table 2. Mean precision on the same 14 categories using a spatial pyramid. The χ2 and intersection kernels were used here due to the poor
performance of the linear kernel.

Method Linear χ2

Baseline(VLFEAT) 14.14 18.60
Pose Pooling(warp, distance) 23.44 28.18
Pose Pooling(warp, keypoints) 24.21 27.74
Pose Pooling(no warp, distance) 17.74 23.06
Pose Pooling(no warp, keypoints) 17.68 22.69

Table 3. Mean precision on the full 200 categories using BOW
SIFT features. These results are not directly comparable to the
results in [35], as an earlier version of the dataset was used there.

We also test our methods on the full 200 categories of
the CUB dataset. We split the training/test according to the

default split provided in the dataset and use the BOW SIFT
feature as the image descriptor. Table 3 presents these re-
sults demonstrating that pose pooling kernel outperforms
the baseline method; pooling on the warped feature has the
best performance.

5. Conclusion
In this paper we demonstrate the ability to normalize

pose based on super-category landmarks, and show that this
can significantly improve models of individual categories
when training data are limited. Our method does not require
3-D training data, and is suitable for categories that do not
admit volumetric representations. Our scheme is based on



contemporary poselet-based representation schemes which
consider the ensemble of detector responses trained for spe-
cific pose-keypoint configurations. In contrast to existing
2-D approaches, our method computes a set of local de-
scriptors at detected poselet locations, and uses these to
form a fine-grained category model. We achieve pose nor-
malization via explicit warping and implicit pooling; our
method defines a pose normalized similarity or kernel func-
tion that is suitable for nearest-neighbor methods or kernel-
based learning method.
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