PANDA: Pose Aligned Networks for Deep Attribute Modeling

Ning Zhang^{1,2}

Manohar Paluri¹ Marc'Aurelio Ranzato¹ Trevor Darrell²

Lubomir Bourdev¹

Why is attribute classification challenging?

Low resolution

Toward attribute classification

Transfer knowledge

polar bear

black: no

white: yes

brown: no

stripes: no

water: yes

eats fish: yes

[Lampert et al. (CVPR 09), Farhadi et al. (CVPR 09)]

[Kumar et al. (ICCV 09)]

[Bourdev et al. (ICCV11), Zhang et al. (ICCV 13) Joo et al. (ICCV 13)]

Progress in deep learning

[Krizeshsky et al. NIPS 12, Zeiler et al. ICLR 14]

[Girshick et al. CVPR 14]

[Toshev et al. CVPR 14]

[Taigman et al. CVPR 14]

Can we train CNN from scratch?

method	Joo et al. ICCV 2013	CNN from scratch
mean AP	70.7	58.11

What if we finetune from ImageNet?

method	Joo et al	from scratch	from ImageNet
mean AP	70.7	58.11	67.49

How can we simplify the task?

Decompose the image into parts

[Bourdev et al. (ICCV11), Zhang et al. (ICCV 13) Joo et al. (ICCV 13)]

Decompose the image into parts

Our approach

Part-based models

Deep convolutional networks

Pose normalization

Discriminative feature representation

Pose Aligned Networks for Deep Attribute modeling (PANDA)

Poselets capture part of the pose from a given viewpoint

Final representation

Part-Level CNN

Dataset: Attribute 25k

Distribution of ground truth labels

2061 training examples per poselet on average

RESULTS

Average Precision (AP) on Attribute 25k

Average Precision (AP) on Attribute 25k

Component Evaluation

method	mean AP
PANDA (Holistic + Poselets)	70.74

Component Evaluation

method	mean AP
PANDA (Holistic + Poselets)	70.74
Holistic only	44.97
Poselets only	64.72

Component Evaluation

method	mean AP
PANDA (Holistic + Poselets)	70.74
Holistic only	44.97
Poselets only	64.72
Holistic + DPM	61.20

Poselets vs DPM

Forced to fire no matter what

Frontal face poselet

Transfer learning

Adding no attributes and reco. CNNs

Use the same CNNs only retrain SVM classifier

smiling: AP 84.7% (frequency baseline 40.67%)

walking: AP 26.0% (frequency baseline 4.34%)

sitting: AP 25.70% (frequency baseline 7.65%)

AP on Berkeley Attributes of People Dataset

AP on Berkeley Attributes of People Dataset

AP on Berkeley Attributes of People Dataset

The part-level CNNs are trained using Attribute 25k data.

Top scoring examples

wear glasses

short hair

female

Top scoring examples

wear hat

wear jeans

Hard to see skin Failure Cases

Unusual pose

Predicted: Long sleeves, Ground truth: short sleeves

Predicted: short pants, ground truth: Long pants

Annotation errors

Gender Recognition on Labeled Faces in the Wild

Much easier dataset - no occlusion, high resolution, centered frontal faces

Method	Gender AP
Kumar et al	95.52
Frontal face poselet	96.43

Gender Recognition on Labeled Faces in the Wild

Much easier dataset - no occlusion, high resolution, centered frontal faces

Method	Gender AP
Kumar et al	95.52
Frontal face poselet	96.43
PANDA	99.54

Male of female?

[Kumar et al, ICCV 2009]

Does more data help?

Comparison

- Use poselet as part-based model
- Has context-level attribute classifier
- Use HOG+color+skin+part masks

- Use poselets as part-based model
- Attributes are jointly trained
- Training part-level CNN for powerful discriminative feature
- Generalized much better to new attributes

Conclusion

- Pose-normalization significantly helps deep convolutional networks in the task of attribute classification.
- Mid-level parts remain important in the context of CNNs.

Thanks!

Code and pre-trained models will be released soon.

Running time

- Single CPU
- 13s (poselet detection) +2s(feature extraction)