Deformable Part Descriptors for Fine-grained Recognition and Attribute Prediction Ning Zhang¹, Ryan Farrell^{1,2}, Forrest landola¹, Trevor Darrell¹

Introduction

Fine-grained Recognition anna's hummingbird

Human Attribute Prediction

ruby-throated hummingbird

Pose-normalized representations [1]

Deformable Part Model (DPM)

- Weakly supervised DPM
- Fix-sized part filters initialized by heuristics.
- Components initialized by clustering aspect ratio.
- Strongly supervised DPM [2]
- Semantic part filters initialized by part annotations.
- Clusters pose information to initialize the components.
- Computational efficient DPM detections [3].
- Strong DPM provides semantic part localizations for pose-normalized representations.
- What about simpler weak DPM without pose annotations?

¹ICSI / EECS, University of California, Berkeley ²Brigham Young University

Deformable part descriptors (DPD)

long hair?

is baby?

wear hat?

- The first descriptor (top row) applies a strong DPM for part localization then pool features from these inherently semantic parts.
- The second descriptor employs a weakly supervised DPM for part localization and then used a learned semantic correspondence weights to pool features from the latent parts into semantic regions.

How Weights Get Computed

$$\blacktriangleright w_{il}^{(j)} \in \mathcal{W} \text{ of size } |\mathcal{P}| \times |\mathcal{R}| \times |\mathcal{C}|.$$
$$w_{il}^{(j)} = \sum_{k=1}^{A} \rho_{kl} \cdot \textit{overlap}\left(a_k, p_i^{(j)}\right)$$

- $ightarrow p_i^{(j)}$: *i*-th part of component $c^{(j)}$. r_i : semantic region.
- ▶ $a_k \in A$: keypoints or other semantic labels.
- ▶ $\rho_{kl} \in [0, 1]$: relevance of a_k to region r_l .
- ► \mathcal{I}_{jk} : training images with a_k and component $c^{(j)}$.

$$\textit{overlap}\left(a_k, p_i^{(j)}\right) = \frac{|\{I \in \mathcal{I}_{jk} | a_k(I) \cap p_i^{(j)} \neq \emptyset\}}{|\mathcal{I}_{jk}|}$$

Example Results and Failure Cases

Top scored people with long hair.

Pooling/Classification

- Pose-normalized representation $\Psi_{pn}(I) = \left[\Psi\left(I, r_0\right), \ldots, \Psi\left(I, r_R\right)\right].$
- Pooled image feature for semantic region $\Psi(I, r_I)$.

$$\Psi(I, r_{I}) = \frac{1}{N} \sum_{i=1}^{P} w_{iI}^{(j)} \cdot \Psi(I, p_{i}^{(j)})$$

▶ 1 vs all linear SVM using Ψ_{pn} for final classification.

Top scored people wearing long sleeves.

Most confused failure case of males.

Method	Mean Accuracy(%)
MKL	19.0
Random Forest	19.2
KDES	26.4
TriCos	26.7
Template matching	28.2
Segmentation	30.2
Bubblebank	32.5
DPD-strong-2	34.5

Mail: {nzhang, forresti, trevor}@eecs.berkeley.edu, farrell@cs.byu.edu

Experimental Results

Fine-grained Recognition

Method	Mean Accuracy(%)				
PPK	28.18				
KDES	42.53				
Template matching	43.67				
Oracle	64.53				
DPD-weak-8	50.98				
DPD-strong-2	50.05				
DPD-weak-8-DeCAF [4]	64.96				
Results on CUB200-2011 dataset.					

Results on CUB200-2010 dataset

Human Attribute Prediction

Attribute	Freq	SPM	Poselets	Per component	DPD-weak-8	DPD-strong-2
is male	59.3	68.1	82.4	80.5	82.9	83.7
has long hair	30.0	40.0	72.5	60.8	67.8	70.0
has glasses	22.0	25.9	55.6	33.6	40.7	38.1
has hat	16.6	35.3	60.1	61.3	70.3	73.4
has t-shirt	23.5	30.6	51.2	43.7	46.1	49.8
nas long sleeves	49.0	58.0	74.2	74.3	76.5	78.1
has shorts	17.9	31.4	45.5	50.3	59.4	64.1
has jeans	33.8	39.5	54.7	72.3	77.1	78.1
has long pants	74.7	84.3	90.3	90.6	93.0	93.5
Mean AP	36.31	45.91	65.18	63.03	68.20	69.88
						·

Results on the Human Attributes dataset.

Localization Results of strong DPM

Samples of correct part localizations.

Failure cases of part localizations.

References

 Ning Zhang, Ryan Farrell and Trevor Darrell. Pose Pooling Kernels for Sub-Category Recognition. In CVPR 2012.
Hossein Azizpour and Ivan Laptev. Object Detection Using Strongly-Supervised Deformable Part Models. In ECCV 2012. [3] Charles Dubout and François Fleuret. Exact Acceleration of Linear Object Detectors. In ECCV 2012. [4] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng and Trevor Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition. On Arxiv.