Part-based R-CNNs for Fine-grained Category Detection

Ning Zhang

Jeff Donahue

Ross Girshick Trevor Darrell

EECS, UC Berkeley

Challenges of Fine-grained Categorization

Black footed Albatross

Challenges of Fine-grained Categorization

Laysan Albatross

Finding correspondence

Blue headed vireo

White eyed vireo

???

Finding correspondence

Blue headed vireo

White eyed vireo

???

Blue headed vireo

Pose-normalized correspondence

Blue headed vireo

White eyed vireo

1) Correspondence

2) Feature representations

Prior work on fine-grained categorization

Correspondence

- [Farrell et.al. ICCV 2011]
- [Yao et.al. CVPR 2012]
- [Zhang et.al. CVPR 2012]
- [Liu et.al. ECCV 2012]
- [Yang et.al. NIPS 2012]
- [Berg et.al. CVPR 2013]
- [Chai et.al. ICCV 2013]
- [Gavves et.al. ICCV 2013]
- [Liu et.al. ICCV 2013]
- [Xie et.al. ICCV 2013]
- [Zhang et.al. ICCV 2013]
- [Göring et.al. CVPR 2014]

Bounding box assumed at test time

Prior work on fine-grained categorization

Correspondence

- [Farrell et.al. ICCV 2011]
- [Yao et.al. CVPR 2012]
- [Zhang et.al. CVPR 2012]
- [Liu et.al. ECCV 2012]
- [Yang et.al. NIPS 2012]
- [Berg et.al. CVPR 2013]
- [Chai et.al. ICCV 2013]
- [Gavves et.al. ICCV 2013]
- [Liu et.al. ICCV 2013]
- [Xie et.al. ICCV 2013]
- [Zhang et.al. ICCV 2013]
- [Göring et.al. CVPR 2014]

Feature representation

(color) SIFT:

- [Farrell et.al. ICCV 2011]
- [Zhang et.al. CVPR 2012]
- [Liu et.al. ECCV 2012]
- [Chai et.al. ECCV 2012]
- [Göring et.al. CVPR 2014]

HOG:

- [Berg et al. CVPR 2013]
- [Liu et.al. ICCV 2013]

Fisher vector:

- [Chai et.al. ICCV 2013]
- [Gavves et.al. ICCV 2013]

Kernel descriptors:

- [Yang et.al. NIPS 2012]
- [Zhang et.al. ICCV 2013]

Bounding box assumed at test time

Progress in deep learning

LeCun et.al. 1989-1998

[Krizhevsky et.al. NIPS 2012]

- OCR [Ciresan et.al. CVPR 2012] [Wen et.al. ICML 2013]
- **Pedestrian detection** [Sermanet et.al. CVPR 2013]
- Scene parsing [Farabet et.al. PAMI 2013]
- Action recognition [Karpathy et.al. CVPR 2014]
- Face verification [Taigman et.al.
 CVPR 2014]
- Pose estimation [Toshev et.al. CVPR 2014] [Jain et.al. ICLR 2014]
- Object detection [Girshick et.al. CVPR 2014] [Sermanet et.al. ICLR 2014]

Deep representations for fine-grained

conv3

network training from scratch

Bounding box assumed

[Donahue et.al. ICML 2014]

DPM detections + DeCAF feature

conv1

conv2

Align Classify Detect Represent [Branson et.al. BMVC 2014.] warped head **DPM** keypoint p(c|x) detection warped body finetuned deep network entire image

conv4

assumed

conv5 fc6 fc7 fc8

Limitations

Hand-engineered feature(e.g. HOG)

Bounding box assumed at test time

Limitations

Hand-engineered feature(e.g. HOG)

Bounding box assumed at test time

Recent breakthrough for object detection

OverFeat [Sermanet et.al. ICLR 2014]

R-CNN [Girshick et.al. CVPR 2014]

Can we simultaneously detect objects and find part correspondences?

Extend RCNN to parts

Girshick et.al. Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation. CVPR, 2014

Unifying correspondence and feature learning

1) Correspondence

assumption.

Overview of our approach

Pose-normalized Input images with region proposals Object detection and part localizations representation Top scored object and part predictions Geometric Constraints Box constraint

Gaussian Mixture

Non-parametric

Object and Part detectors

Bounding box and part annotations

Region proposals using selective search

Object and Part detectors

Object and Part detectors

Box constraint

head prediction

bounding box prediction

$$\Delta_{\text{box}}(X) = \prod_{i=1}^{n} c_{x_0}(x_i) \quad c_{x}(y) = \begin{cases} 1 \text{ if region } y \text{ falls outside region } x \\ 0 \text{ otherwise} \end{cases}$$

Geometric constraint: Gaussian Mixture

Bounding box and part annotations

Normalize part box coordinates

$$\begin{cases} x' = (x - x_b)/h_b \\ y' = (y - y_b)/w_b \end{cases}$$

Generate Gaussian mixture prior for each part

center of head

center of body

Incorporate prior into part detector scores

$$\Delta_{\text{geometric}}(X) = \Delta_{\text{box}}(X) \left(\prod_{i=1}^{n} \delta_i(x_i)\right)^{\alpha}$$

Geometric constraint: non-parametric

Predicted bounding box

Nearest neighbors using pool5 feature with cosine distance

Fit one gaussian using top K neighbors

$$\Delta_{\text{geometric}}(X) = \Delta_{\text{box}}(X) \left(\prod_{i=1}^{n} \delta_{i}(x_{i})\right)^{\alpha}$$

Comparison of constraints

Deformable part models

- Multiple components
- Deformation cost is a percomponent Gaussian prior.
- R-CNN is a single-component model, motivating our MG and NP constraint.

Belhumeur et al. Localizing parts of faces using a consensus of exemplars. In CVPR 2011.

- Nonparametric prior on keypoint configuration space.
- Our non-parametric prior uses nearest neighbors on appearance space.

Fine-grained categorization

Bounding box and part predictions

RESULTS

Dataset: CUB-200-2011

~12k images, 200 classes, 15 keypoints

Fine-grained categorization results

Evaluation metric: classification accuracy (%)

- [1] Berg et.al. POOF: Part-based one-vs-one features for fine-grained categorization, face verification, and attribute estimation. In CVPR 2013.
- [2] Chai et.al. Symbiotic segmentation and part localization for fine-grained categorization. In ICCV 2013.
- [3] Gavves et.al. Fine-grained categorization by alignments. In ICCV 2013.
- [4] Donahue et.al. DeCAF: A deep convolutional activation feature for generic visual recognition. In ICML 2014.

Does finetuning help?

Does finetuning help?

Part localization results

Evaluation metric:

Percentage of Correctly Localized Parts (PCP)

$$overlap(a,b) = \frac{a \cap b}{a \cup b}$$

Bounding Box Given			
	Head	Body	
Strong DPM [1]	43.49%	75.15%	
Ours (box)	61.40%	65.42%	
Ours (GM)	66.03%	76.62%	
Ours (NP)	68.19%	79.82%	

Bounding Box Unknown			
	Head	Body	
Strong DPM [1]	37.44%	47.08%	
Ours (box)	60.56%	65.31%	
Ours (GM)	61.94%	70.16%	
Ours (NP)	61.42%	70.68%	

[1] Azizipour et.al. Object detection using strongly-supervised deformable part models. In ECCV 2012.

Part localization samples

Where doesn't it work?

- Limited performance of region proposal by selective search for small parts.
- Regional proposal is not designed to pick up parts.

Recall of selective search boxes on CUB200-2011 bird dataset

overlap	0.50	0.60	0.70
bounding box	96.70%	97.68%	89.50%
head	93.34%	73.87%	37.57%
body	96.70%	85.97%	54.68%

Where doesn't it work?

- Limited performance of region proposal by selective search for small parts.
- Regional proposal is not designed to pick up parts.

Recall of selective search boxes on CUB200-2011 bird dataset

overlap	0.50	0.60	0.70
bounding box	96.70%	97.68%	89.50%
head	93.34%	73.87%	37.57%
body	96.70%	85.97%	54.68%
belly	81.17%	51.82%	21.29%
leg	83.60%	51.48%	19.52%

Revisit sliding window for small parts...

Take away

- A unified deep network for both part-localization and fine-grained categorization.
- Bounding box is not required at test time.
- Pose-normalized representation remains important for fine-grained categorization.
- R-CNN can also be used for part detections with geometric constraints.

Using more parts

Images with 5 parts annotation: head, body, back, belly and leg

Bounding box not given at test time without finetuning

	head+body	5 parts
Ours (box)	65.22%	62.75%
Ours(GM)	65.98%	65.43%
Ours(NP)	65.96%	65.72%

Region proposal on Pascal parts

Part annotations on six animal classes from Pascal

[Azizpour et.al. ECCV 2012]

Recall on some parts from PASCAL:

Cat head: 98.72 Cat back: 85.32

Dog frontal face: 95.65 Dog head: 98.98

Sheep tail: 31.25 Sheep torso: 38.24 Sheep ears: 42.54

Cow ears: 45.65 Cow head: 85.23 Bird beak: 48.41 Bird tail: 66.49

Results with no parts

Oracle (ground truth bounding box)	57.94%
Oracle-ft	68.29%
Strong DPM [3]	38.02%
R-CNN [21]	51.05%
$Ours (\Delta_{box})$	50.17%
Ours $(\Delta_{\text{geometric}} \text{ with } \delta^{MG})$	51.83%
Ours $(\Delta_{\text{geometric}} \text{ with } \delta^{NP})$	52.38%
Ours-ft (Δ_{box})	62.13%
Ours-ft ($\Delta_{\text{geometric}}$ with δ^{MG})	62.06%
Ours-ft ($\Delta_{\text{geometric}}$ with δ^{NP})	$\boldsymbol{62.75\%}$