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Challenges of Fine-grained Categorization
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Finding correspondence

Blue headed vireo




Finding correspondence

Blue headed vireo




Pose-normalized correspondence

1) Correspondence

Blue headed vireo
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2) Feature representations

classifier
I H |-| I_I D oo

plcix)




Prior work on fine-grained categorization
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Feature representation

ﬂolor) SIFT:
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Progress in deep learning
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[Wen et.al. ICML 2013]

* Pedestrian detection [Sermanet
et.al. CVPR 2013]

e Scene parsing [Farabet et.al.
PAMI 2013]

* Action recognition [Karpathy
et.al. CVPR 2014]

* Face verification [Taigman et.al.
CVPR 2014]

* Pose estimation [Toshev et.al.
CVPR 2014] [Jain et.al. ICLR 2014]

* Object detection [Girshick et.al.
CVPR 2014] [Sermanet et.al. ICLR
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Deep representations for fine-grained
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Limitations

deformable part models poselets

OR other part detectors

Hand-engineered
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Recent breakthrough for object detection

L/
.? :
= person? yes. |

x
R-CNN [Girshick et.al. CVPR 2014]

....................

.................... L 4

Can we simultaneously detect
objects and find part
correspondences?



Extend RCNN to parts

aeroplane? no
; s
—LT E'>|_person? yes.
. CNNiNy
tvmonitor? no.
Input Extract region Compute CNN Classify regions
image proposals (~2k / image) features (linear SVM)

Try R-CNN https://github.com/rbgirshick/rcnn Use part annotations.
o Treat object and
Try CAFFE http://caffe.berkeleyvision.org

parts as individual
categories.

Girshick et.al. Rich Feature Hierarchies for Accurate Object Detection
and Semantic Segmentation. CVPR, 2014




Unifying correspondence and feature learning
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Overview of our approach

Input images with region proposals  Object detection and part localizations Pose-normalized
representation

Box constraint
Gaussian Mixture
Non-parametric



Object and Part detectors

Bounding box and part annotations
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Object and Part detectors

Top scored object and part detections

R-CNN detection
for parti
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Object and Part detectors

Top scored object and part detections

R-CNN detection
for parti

di(z) = o(w]p(x))
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Learned Deep
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weight al feature
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Box constraint
Gaussian Mixture
Non-parametric

i=0 X* = arg max|A(X) Hdz(wz)
i=0

X




Box constraint

head prediction D bounding box prediction

Wy
/12> M ]

Atyox ( X ) = H Cxp (sz) eoy) = 1 if regio.n y falls outside region x
i1 0 otherwise



Geometric constraint: Gaussian Mixture

Bounding box and part annotations Normalize part box coordinates
/I __
' = (x—xp)/hy
— /I __
Y = (Y — Yb)/wo

|

Generate Gaussian mixture
prior for each part

center of head center of bodi

Incorporate prior into part detector scores

Ageometric(X) — Abox (X) (H 6'6 (337,))




Geometric constraint: non-parametric

Predicted
bounding box

Nearest neighbors using pool5 feature with cosine distance

Fit one gaussian
using top K neighbors



Comparison of constraints

/ Deformable part models \ /ﬁumeur et al. Localizing parts of faces Uh\
3 o

consensus of exemplars. In CVPR 2011.

* Multiple components

* Deformation cost is a per-
component Gaussian prior.

* R-CNNis a single-component
model, motivating our MG and
NP constraint. * Nonparametric prior on keypoint configuration

space.
* Our non-parametric prior uses nearest
neighbors on appearance space.



Fine-grained categorization

Bounding box and part predictions
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RESULTS



Dataset: CUB-200-2011

~12ki images, 200 classes, 15 keypomts
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back
beak
belly
breast
Crown
forehead

lett leg

nape
right eye
right leg
right wing
tail
throat




Fine-grained categorization results

Evaluation metric: classification accuracy (%)

Bounding box given Bounding box not given

POOF[1] ... 56.78 DPD+DeCAF[4] | 4494
Alignment [3]  F 627
ours(Ghv) - [ 65.08

DPD+DeCAF [4] [L L 64.96

o o) | =
Ours(box) [ 67.55

[1] Berg et.al. POOF: Part-based one-vs-one features for fine-grained
Ours(GM) _ 67.98 categorization, face verification, and attribute estimation. In CVPR 2013.

[2] Chai et.al. Symbiotic segmentation and part localization for fine-grained

categorization. In ICCV 2013.
Ours (NP) —68-07 [3] Gavves et.al. Fine-grained categorization by alignments. In ICCV 2013.
[4] Donahue et.al. DeCAF: A deep convolutional activation feature for

generic visual recognition. In ICML 2014.




Accuracy (%)

Does finetuning help?

No bounding box given

72.83

3

64.57 65.22 65.96
57 : I I I
groundtruth Ours (box) Ours(GM) Ours(NP)

bounding box

® No finetuning

Oracle parts



Accuracy (%)
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Does finetuning help?

No bounding box given 82.02

72.73 72.95 73.89
68.29

groundtruth Ours (box) Ours(GM) Ours(NP) Oracle parts
bounding box

® No finetuning ¥ Finetuning



Part localization results

Evaluation metric:

Percentage of Correctly Localized
Parts (PCP)

anyd
a Ub

if overlap of D >0.5

part prediction is correct

overlap(a,b) =

Strong DPM [1]
Ours (box)
Ours (GM)
Ours (NP)

Bounding Box Unknown

Strong DPM [1]
Ours (box)
Ours (GM)
Ours (NP)

Head
43.49%
61.40%
66.03%
68.19%

Head
37.44%
60.56%
61.94%
61.42%

Body
75.15%
65.42%
76.62%
79.82%

Body
47.08%
65.31%
70.16%
70.68%

[1] Azizipour et.al. Object detection using strongly-supervised deformable

part models. In ECCV 2012.



Part localization samples

part box prediction | | bounding box prediction
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Where doesn’t it work?

* Limited performance of region proposal by selective
search for small parts.

* Regional proposal is not designed to pick up parts.
Recall of selective search boxes on CUB200-2011 bird dataset

“overip | os—|oso | —om

bounding box 96.70% 97.68% 89.50%
head 93.34% 73.87% 37.57%
body 96.70% 85.97% 54.68%



Where doesn’t it work?

* Limited performance of region proposal by selective
search for small parts.

* Regional proposal is not designed to pick up parts.
Recall of selective search boxes on CUB200-2011 bird dataset
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bounding box 96.70% 97.68% 89.50%
head 93.34% 73.87% 37.57%
body 96.70% 85.97% 54.68%
belly 81.17% 51.82% 21.29%

leg 83.60% 51.48% 19.52%

Revisit sliding window for small parts...



Take away

A unified deep network for both part-localization
and fine-grained categorization.

Bounding box is not required at test time.

Pose-normalized representation remains
important for fine-grained categorization.

R-CNN can also be used for part detections with
geometric constraints.



Using more parts

Images with 5 parts annotation:

head, body, back, belly and leg
Bounding box not given at test time

without finetuning

hack

beak o % Ours (box) 65.22% 62.75%

belly

hreast e

Crawn = — = ol Ours(GM) 65.98% 65.43%
farehead . : ‘ _ -“lﬂrii

right eye | 7 4

tight leg
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tail
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Region proposal on Pascal parts

imal classes from Pascal

Part annotations on six

- \§ OISO g [Azizpour et.al.
i ECCV 2012]

Recall on some parts from PASCAL:
Cat head: 98.72 Cat back: 85.32
Dog frontal face: 95.65 Dog head: 98.98

Sheep tail: 31.25 Sheep torso: 38.24 Sheep ears: 42.54
Cow ears: 45.65 Cow head: 85.23

Bird beak: 48.41 Bird tail: 66.49




Results with no parts

Oracle (ground truth bounding box) | 57.94%
Oracle-ft 68.29%
Strong DPM [3] 38.02%
R-CNN |[21] 51.05%
Ours (Apox) 50.17%
Ours (Ageometric With 6 ) 51.83%
Ours (Ageometric With 6% %) 52.38%
Ours-ft (Apox) 62.13%
Ours-ft (Ageometric with 6M¢) 62.06%
Ours-ft (Ageometric With oNF ) 62.75%




