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Abstract

Subordinate-level categorization typically rests on es-
tablishing salient distinctions between part-level character-
istics of objects, in contrast to basic-level categorization,
where the presence or absence of parts is determinative.
We develop an approach for subordinate categorization in
vision, focusing on an avian domain due to the fine-grained
structure of the category taxonomy for this domain. We ex-
plore a pose-normalized appearance model based on a vol-
umetric poselet scheme. The variation in shape and ap-
pearance properties of these parts across a taxonomy pro-
vides the cues needed for subordinate categorization. Train-
ing pose detectors requires a relatively large amount of
training data per category when done from scratch; using
a subordinate-level approach, we exploit a pose classifier
trained at the basic-level, and extract part appearance and
shape information to build subordinate-level models. Our
model associates the underlying image pattern parameters
used for detection with corresponding volumetric part lo-
cation, scale and orientation parameters. These parame-
ters implicitly define a mapping from the image pixels into
a pose-normalized appearance space, removing view and
pose dependencies, facilitating fine-grained categorization
from relatively few training examples.

1. Introduction

In recent years, the computer vision community has de-
voted extensive efforts toward the development of compu-
tational techniques for object recognition. These efforts,
however, have focused almost exclusively on the recogni-
tion of basic-level categories; relatively few have addressed
the broad continuum of fine-grained or subordinate cate-
gories which lies between the two extremes of individu-
als (e.g. face recognition, biometrics) and basic-level cat-
egories (e.g. Caltech-256 etc.).

In cognitive psychology, Rosch et al. [43] proposed that,
whereas basic-level categories are principally defined by
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Figure 1. Overview of the Proposed Approach. Basic-level cat-
egories are modeled by a configuration of volumetric primitives
or parts. Detection recovers these parts and enables application
of a pose-normalized appearance model for classification within a
taxonomy of subordinate categories.

their parts, subordinate level categories are distinguished
by the differing properties of these parts. This theory
suggests that the capacity to differentiate subordinate cat-
egories hinges not only on the successful recognition of
individual parts but, perhaps more particularly upon un-
derstanding how these part “properties” vary across sub-
ordinate categories. While recent advances on part-based
and attribute-based recognition are promising, general and
view-independent identification of part-specific attributes in
novel images remains somewhat elusive.

We tackle the problem of subordinate categorization,
proposing a solution that simultaneously addresses the chal-
lenges of localizing and describing the class-defining parts.
Our approach (see Figure 1) builds upon the Poselet detec-
tion framework recently proposed by Bourdev et al. [7, 8].
The strength that we see in this framework is that, in theory,



the model allows for specific types of training annotations to
be recovered from detections in test images. Our approach
is also motivated by Biederman’s theory of non-accidental
arrangements of geometric primitives [5, 6]. We use a sim-
ple configuration of volumetric primitives to represent the
basic-level class. Then, following Rosch et al., variations in
the shape, configuration and appearance of these volumetric
parts provide the basis for subordinate discrimination.

Our proposed approach contributes three main innova-
tions:

(i) a framework, based on Poselets, for detecting volumet-
ric part models, used both to find the basic-level object
and to convey information about part shape and con-
figuration;

(ii) a pose-normalized appearance model (similar to repre-
sentations such as Active Appearance Models [13] and
Morphable Models [33] used in the domain of faces)
which is used to effectively compare part appearances
in a test image to those of subordinate category train-
ing examples; and

(iii) a classification model, based on Stacked Evidence
Trees [39], which aggregates information about part
properties (shape, configuration and appearance) and
leverages the underlying taxonomy.

We demonstrate experimentally that the proposed approach
enhances the performance for view-independent recogni-
tion of subordinate categories.

2. Related Work
The problem of subordinate categorization has been

previously examined. Hillel et al. [2] performed experi-
ments on two subclasses for each of six basic categories
(e.g. Grand vs. Upright Pianos). Nilsback and Zisserman
[41, 42] considered subordinate categories of flowers (intro-
ducing the 17- and 102-category Oxford Flowers datasets),
whereas Martı́nez-Muñoz et al. [39] considered subordinate
categorization of stonefly larvae, a domain which exhibits
tremendous visual similarity. These approaches focused
primarily on discriminative learning of image features, an
approach that does not generalize for view-independent cat-
egorization of part-based objects that exhibit significant
pose variation.

There are various methods that have been proposed for
learning part-based object representations. Constellation
models [11, 48] and their computationally attractive vari-
ants [14, 27] are composed of a set of local part detectors
together with one or more probability density functions de-
scribing the parts’ relative locations. Felzenszwalb and Hut-
tenlocher [24] proposed an efficient framework implement-
ing Fischler and Elschlager’s Pictorial Structure model [29],
which represents an object by a collection of parts, intercon-
nected as if by elastic springs. This Deformable Part Model

has culminated in Felzenszwalb et al.’s recent work using
Latent SVMs [23] to discriminatively train class-specific
object detectors. Ferrari among others have explored the
use of contours in object representation [28]. While these
models perform well for objects that exhibit minimal artic-
ulation or pose variation, they are unsatisfactory for objects
with high intra-class variability or significant articulation.

There is also a growing body of work that seeks to lever-
age similarities between categories to improve recognition
performance. We consider two principal areas of interest:
first, class taxonomies or hierarchies and, second, attribute-
based models. Unsupervised hierarchical approaches range
from constructing latent topic hierarchies [3] to sharing
classifiers [1] or visual parts [45] to constructing efficient
classification trees [31, 38]. Each such approach provides
insights or advances toward efficiently solving basic-level
classification. These unsupervised approaches, however,
cannot be readily applied to the problem of distinguishing
closely-related subordinate categories which, by definition,
share a common set of parts and yet can have both subtle
and drastic appearance variation.

Techniques that leverage the semantic class hierarchy
should possess an inherent advantage over those that do not.
Supervised methods that utilize such information (as con-
tained in WordNet for example) include the sharing of train-
ing examples across semantically similar categories [26]
and combining information from different levels of the se-
mantic hierarchy [50]. Deng et al. [16] consider exploiting
the semantic hierarchy in the context of more than 10,000
categories (using the ImageNet [17] dataset).

A growing interesting in attribute-based recognition has
produced some notable advances. Representative work in
this area includes Farhadi et al. [19, 20], Kumar et al. [34]
Lampert et al. [35] and Wang and Forsyth [47]. These
techniques often learn discriminative models from attribute-
labeled training data and subsequently apply the learnt mod-
els to estimate the appropriate visual attributes present in a
test image. Attribute-based models are particularly well-
suited for addressing the one-shot learning problem (previ-
ously considered in [21, 22, 25, 40] among others). Note
that while these approaches are effective for the recovery
of object level attributes such as brown, furry, spotted and
even four-legged, they are generally insufficient to model
subtle differences between parts necessary for subordinate
categorization.

An interesting exception is the innovative work of Bran-
son et al. [9] which proposes improving recognition ac-
curacy by interleaving computation with attribute queries
made to a human subject. This method performs effective,
though not automatic, recognition in a large, 200-category
bird dataset [49]1. Additionally, in the context of subordi-

1Additional details on the CUB-200 dataset can be found in Section 6
which describes our experiments.



nate categorization, the attribute-based work of Berg et al.
[4] is also of interest as it attempts to discover (and localize)
visual attributes which can be used to differentiate classes
within a basic-level category (e.g. stiletto, running shoe,
sandal, etc.). This approach is somewhat limited, however,
in that its training data is segmented from any background
and also must be in a similar pose/orientation.

Before proceeding to describe our approach, we first visit
the theory initially put forth by Marr and Nishihara [37]
and later extended with Biederman’s geons [5] which sug-
gests that object perception is largely governed by recogni-
tion of three-dimensional parts in particular configurations.
While subsequent research has questioned certain aspects
such as view invariance [44], this theory of perception as
the search for arrangements of non-accidental structures has
survived. Biederman et al. revisited it in the specific context
of subordinate-level classification [6]. This theory provides
support for the proposed approach which models a basic-
level category with geometric primitives, and then couples
the statistical variation of the parts’ shape and arrangement
with their appearance to represent subordinate classes.

3. Subordinate Categorization in
an Avian Domain

We begin by considering more closely the problem of
subordinate categorization, highlighting some of the ways
it differs from basic-level categorization. The seminal work
of Rosch et al. [43] provided experimental evidence in sup-
port of a distinction between levels of abstraction within
a taxonomy: superordinate, basic, and subordinate (in de-
creasing order of inclusivity). Rosch et al. contend that
basic-level categories generally possess the highest cue va-
lidity P (category|cue), as superordinate-level categories,
being more inclusive, have fewer attributes in common and
subordinate-level categories share most of their attributes
with contrasting subordinate categories.

3.1. Basic- and Subordinate-Level Categorization

Objects within a superordinate category tend to share
common material and/or functional properties (sensory-
motor “affordances” to use Gibson’s terminology [30]). In
contrast, a (and perhaps the) key characteristic of categories
at the basic-level is shape. Rosch et al. include in their def-
inition of shape “the structural relationship of the parts of
an object to each other - for example, the visual representa-
tion of the legs, seat, and back of a chair and of the way in
which those parts of the chair are placed in relation to one
another.”

This notion of basic-level shape as a fixed set of parts in
an expected arrangement agrees strongly with Biederman’s
theory of Recognition-by-Components [5] which suggests
that a category may be represented by volumetric compo-
nents or primitives called “geons” (blocks, cylinders, cones,

etc.) in a particular configuration. While Biederman’s the-
ory presents a broad perspective on the human recognition
process (edge extraction and parsing, identification of com-
ponents, matching to known configurations, object identifi-
cation), we focus on this underlying representation of basic-
level categories: a configuration of volumetric parts.

This basic-level representation is intuitive for many nat-
ural categories. Objects within a category (dogs or trees, for
example) share a common set of parts in a more-or-less pro-
totypical configuration ({head, body, legs, tail} and {trunk,
branches, leaf canopy} respectively). Within each such cat-
egory, the configuration and “connectivity” of these parts is
generally highly-constrained.

Differentiation amongst subordinate categories (e.g. be-
tween sports cars and sedans or even between different
brands/models), however, must rely on more than simply
the presence and/or configuration of these parts. We thus
consider properties of these parts, both quantitative proper-
ties such as shape variation (aspect, relative size) or struc-
tural relationships (relative position/angle) and qualitative
appearance properties such as color, material and texture.

We have selected birds as the domain for our experi-
mental evaluation for a variety of reasons. There are sev-
eral basic-level categories for which vision datasets include
many subordinate classes. To our knowledge, none is larger
than the recently introduced Caltech/UCSD Birds dataset
(CUB-200) [49] which includes 200 distinct avian species.
While some categories are readily identified by their unique
shape, pose, or appearance, the distinctions between other
categories are very subtle. Due to highly variable appear-
ances and articulation, birds are also extremely challenging
to even detect, consistently the most difficult across the 20
categories on the Pascal VOC challenge [18]. Ultimately,
however, our decision to use birds as a domain in which
to explore subordinate visual categorization is principally
motivated by their suitability for our pose-normalized rep-
resentation.

3.2. Pose-Normalized Appearance Representation

Following Rosch’s prototype theory, we distinguish sub-
ordinate categories based on the geometric shape and pho-
tometric appearance properties of their basic-level parts. In
describing our appearance representation, we begin with a
basic-level object, represented as a constellation of volu-
metric parts. The detection process provides estimates for
each part’s respective parameters: location, scale and orien-
tation. The geometric shape and arrangement properties can
be used to influence categorization. Within the domain of
birds, taxonomic guidance by shape is intuitive; individuals
with minimal expertise in recognizing birds can correctly
assign a silhouette to its respective family (e.g. duck, heron,
hawk, owl, songbird, etc.).

As far as the volumetric part appearance properties, the



primary difficulty is pose variation relative to the camera, an
issue that complicates the comparison of part appearances
observed from different angles. To overcome this challenge,
we propose a pose-normalization approach leveraging the
detected volumetric parts. Fundamental to our approach,
this technique imposes a surface parameterization on the
volumetric part, the parameterization serving as a basis for
a non-parametric appearance representation. Comparisons
between images are made not in image space, but on a dis-
tribution of patch descriptors in the parameterized space of
estimated surface normals.

In our part model, we have two ellipsoids, one for the
head and one for the body. For a given ellipsoid, we use
the pose parameters: ellipsoid center (x,y), scale (cross-
section and axial aspect ratio) and orientation (represented
as a quaternion), to determine the transformation that maps
points on a unit sphere onto the ellipsoid’s surface. The in-
verse of this transformation allows us to map image points
(those within the ellipsoid’s silhouette) back onto the unit
sphere. Instead of parameterizing in the sphere’s space, we
randomly sample points on the sphere, transform them onto
the ellipse’s surface and compute their normals (using the
inverse transform), ensuring that they are visible (facing the
camera). As depicted in Figure 2, for each such point on the
ellipsoid’s surface, we find the tangent patch, a small square
patch on the tangent plane centered at the point. The corners
of the tangent patch are projected back into the image form-
ing a parallelogram. The parallelogram’s pixel contents are
warped onto the square fronto-parallel tangent patch (purple
in Figure 2) from which local appearance features are de-
rived (we use a color-SIFT descriptor aligned with the dom-
inant gradient orientation). We couple each patch’s location
and appearance by concatenating the normal vector (blue in
Figure 2) onto the extracted appearance descriptor (red in
Figure 2), yielding a pose-normalized appearance descrip-
tor, or PNAD. After sampling several such points/patches,
we accumulate a non-parametric representation for the vis-
ible portion of the ellipsoidal part.

4. Volumetric Object Localization

As suggested in the introduction, the primary require-
ment for successful differentiation of subordinate categories
is an ability to find parts and understand how these parts
vary (or alternatively, how the “properties” of these parts
vary) across different subordinate categories. To address
the problems of localizing and describing the class-defining
parts simultaneously, we adopt the Poselet framework re-
cently proposed by Bourdev et al. [7, 8], using an object
model comprised of volumetric primitives instead of 2D or
3D keypoints. We provide a brief description of the ap-
proach while highlighting changes needed for our volumet-
ric implementation.

Pose-normalized Appearance
Descriptor (PNAD)

Extracted Tangent Patch

Volumetric Ellipsoid

Figure 2. Pose-normalized Appearance Descriptor (PNAD). For
each ellipsoidal part, tangent patches (purple) with corresponding
appearance descriptors (red) are extracted at sampled points (blue
normal vector) and a Pose-normalized Appearance Descriptor, or
PNAD, is formed by concatenating the location and appearance
information.

4.1. Birdlets: Volumetric Primitive Templates

While the Poselet framework represents a basic-level
category as a constellation of 2D keypoints, our approach
creates “Birdlets”, templates based instead on solid volu-
metric primitives, consistent with Biederman’s notion of
basic-level categories as arrangements of 3D geometric
primitives. Where the former technique estimates the im-
age location of each keypoint, the utility of using volumet-
ric parts lies in its potential to estimate various geometric
quantities for each of the volumetric elements that collec-
tively comprise the basic-level category model. Examples
of such geometric attributes (or “properties”) include part
location, size/aspect, and orientation, and can encode in-
trinsic category characteristics such as the cross-section or
aspect of a bird’s body relative to the size of its head.

This volumetric model is particularly well suited for
birds, as the avian counterparts for interior mammalian
joints (e.g. shoulders, elbows, hips, knees) are often ob-
scured by a bird’s plumage and are thus very difficult to
specify in a typical image. Moreover, the surface or skele-
tal keypoints used in the original Poselet models capture
part proportions (e.g. cross-section, aspect) poorly. The
proposed model, therefore, includes visible point features
(beaktip, eyes, wingtips, feet, and tail) only to assist in con-
figuration alignment; the model remains focused, however,
on its two volumetric components. The bird’s head and
body are each represented by prolate ellipsoids (a sphere
stretched along one axis)with 7 parameters: image location
(x, y), 3D-orientation (a 3-DOF quaternion), and scale (cir-
cular cross-section and axial length). Where one could try
to model a bird with additional primitives, this simplified
version (or “partial version” as Biederman calls it [5, p.
131]) captures the essence of shape and enables the pose-
normalized appearance representation.



4.2. Training and Detection

The Poselet framework requires images annotated with
configuration landmarks (the 2D or 3D keypoint locations
in Bourdev et al.; the location, orientation and scale of vol-
umetric primitives in our case). These annotations serve to
help find training examples that share similar local pose or
configuration (the entire pose need not be similar, just the
part(s) or keypoints in question). In this manner, images
depicting similar poses relative to the camera are grouped
together.

Birdlet training takes a certain base training image and
determines a selection window overlapping some subset of
the volumetric parts (in our case, this could be the head,
the body or both). Next, the pose distance to each of the
other training images is computed, based on the similarity
in parameters for this subset of parts (i.e. can the two im-
ages be registered to one another such that the parts align
well). Specifically, this distance is computed using terms
for rotation (geodesic distance on 4D surface of quaternion
rotations), scale (computed on cross-section and aspect after
scaling to equal volume) and translation (generally ignored
as single ellipsoids can be brought into precise alignment as
can the dipoles formed by ellipsoid centers)

The n−1 closest training images are selected (we nomi-
nally use n = 50) and the similarity transform to align each
to the base image is determined. With this transform, the
parts now line up (as best as can be done with the 2D simi-
larity transformation) and the corresponding image features
should now be well aligned also. Now, for each of n training
images (the base and the n− 1 closest in terms of pose dis-
tance) which have been brought into alignment, the pixels
in the selected window are mapped into a canonical rectan-
gular patch (96× 64 in our case) and a HOG vector [15] is
extracted (the concatenation of HOG features across 8 × 8
blocks). These n HOG vectors are used as positive exam-
ples, together with a much larger set of negative HOG vec-
tors (extracted from other random windows in the training
data), are used to train an SVM classifier to discriminate this
birdlet from background patterns. Like Bourdev et al., we
use a retraining stage, collecting false positives predicted by
the initial classifier and feeding these as additional negative
examples in order to train the final classifier for this birdlet.

For detection, our birdlet classifier will evaluate patches
in a test image using a sliding window (scanning over lo-
cations and scales), responding with a probability of how
similar each scanned patch appears to the positive examples
that the classifier was trained with. Windows with high re-
sponse probabilities are labeled as activations for the given
birdlet.

The great benefit that we saw in the framework of Bour-
dev et al. is that the birdlets we train facilitate detection,
but moreover provide information about the pose or part-
configuration. A birdlet activation provides an estimate or

vote toward the parameters of those volumetric parts that
overlapped the birdlet’s selection window. Hence, whereas
other techniques typically learn a model on latent parts, the
birdlet model maps the image patterns within the selection
window to the semantically meaningful volumetric primi-
tives, inherently providing a level of visual correspondence
across instances (and views).

Many such birdlet templates are trained, binding images
cues from the training set with their counterpart volumetric
part annotations. The collection of birdlets is then applied to
a test image producing a set of birdlet activations. Each acti-
vation has an associated probability (derived from the corre-
sponding classifier’s response) as well as the distribution on
part parameters it acquired during training (this distribution
is a simple tabulation on the parameters of the overlapping
parts once aligned). The birdlet normalizes the distribution
relative to the height of the patch, such that for a given ac-
tivation window, the normalized location and relative size
information can be scaled up the activation window, thus
converting it to a prediction in the test image. Our imple-
mentation uses a non-parametric (kernel density estimate)
density to represent each ellipsoids 7-D parameter space.

The final step is to cluster the set of activations into one
or more final detections with the corresponding volumetric
part estimates. The approach that we have taken for this
clustering is to compute the pairwise consistency of activa-
tion, determined by symmetric K-L divergence between the
parameter distributions of the corresponding parts shared by
the activations’ respective birdlets. We take the pair of ac-
tivations with the highest consistency (and activation prob-
ability or response) and draw the volumetric parts’ parame-
ters from their distributions. In theory we can sample from
the combined distribution, however, in practice, we found
it effective to predict the parameters of each birdlet’s base
training image (for some birdlets, there are small clusters
of examples with similar pose, and thus only a few training
examples that share similar parameters).

5. Integrated Classification
Our approach uses an integrated classification tech-

nique based on Stacked Evidence Trees model proposed by
Martinez-Muñoz et al. [39]. The authors describe this ap-
proach as an alternative to dictionary learning, being instead
a way of “discriminatively structuring the evidence in the
training set”. This model relies on a Random Forest [10]
constructed such that all leaf nodes of the constituent ran-
dom trees are required to have a specified minimum number
(e.g. 20) of training samples. In this manner, when a query
sample is passed through a random tree and reaches a partic-
ular leaf node, the tree returns the distribution across class
labels corresponding to training examples that reached that
node. For a given image, features are extracted densely.
As these features are dropped through the trained random
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Figure 3. Partial Taxonomy for CUB-200. Two family subset (vireos and woodpeckers) from the CUB-200 Dataset.

forest, the class label distribution vectors are collected and
aggregated into an “evidence” vector, each feature effec-
tively voting for the category of the image. A second-stage
(“stacked”) multiclass adaboost classifier is then applied to
the class distribution evidence vector, producing the final
category prediction.

The Stacked Evidence Trees model was selected princi-
pally for the way that it complements the Pose-Normalized
Appearance model, providing an attractive solution to the
problem of varying surface visibility. In general, a volumet-
ric primitive has only half of its surface facing the camera,
the remaining half is not visible. As the visible/occluded
portions are different for each image (e.g. a bird facing
the camera vs. facing left vs. facing right), it is desirable
not only to map the visible portions into a common (pose-
normalized) space, but moreover, to effectively mask which
part(s) of this common space should be used for classifying
each given image.

As described earlier, the Pose-Normalized Appearance
space allows us to compare corresponding parts. Specifi-
cally, a PNAD (Pose-Normalized Appearance Descriptor)
feature couples local appearance information with param-
eterized surface location. However, due to the issue of
feature visibility, one cannot simply quantize this joint ap-
pearance/surface location space and use a bag-of-words ap-
proach for classification. The Stacked Evidence Tree on the
other hand becomes a highly-efficient retrieval tool, taking
a test feature and finding a set of training features (namely
those in the corresponding leaf nodes) that are similar both
in appearance and surface location, and ultimately returning
the class label distribution across this similar set.

An appealing characteristic of the Stacked classifier is
the ability to combine multiple feature types by merely con-
catenating various evidence. In our case, we view this as
the means to combine part appearance (PNADs) together
with other potential sources of discriminative information.
We consider combining shape and arrangement parameters
(e.g. part cross-section/aspect, relative sizes/orientations be-
tween parts, etc.) as well as taxonomic training data.

One additional potential source of information which we

are not currently using is the birdlet activations that con-
tributed to the detection. When a given birdlet is trained, the
other examples selected as positive patches (based on sim-
ilar configuration) may collectively convey information at
test time about the category of detections involving a high-
probability activation of the birdlet in question.

6. Experimental Results
Now that we have described detection of volumetric

primitives, pose-normalized appearance representation, and
integrated classification, we present some experiments in
support of this framework.

6.1. Dataset, Implementation Details, etc.

First utilized by Branson et al. [9], the Caltech-UCSD
Birds 200 dataset [49] currently offers the largest num-
ber of subordinate categories for a single basic-level cate-
gory. We organized the entire dataset into its proper taxo-
nomic hierarchy (order, family, genus, species) and then se-
lected two families to fully annotate with both 2D keypoints
and 3D volumetric primitives (ellipsoids), the vireo and
woodpecker families These annotations, together with near-
duplicate groupings (so that near-duplicates do not straddle
test-training splits), will be made publicly available to other
researchers. While many annotation tasks are well-suited to
crowdsourcing, we felt that proper annotation of the ellip-
soids was non-trivial and accordingly have a smaller dataset
than would be desirable.

As the authors of [8, 7] have only released their code for
detection with a pre-trained human detection model, we had
to reimplement the extensive Poselet framework in its en-
tirety. In our birdlet implementation, we utilized LIBSVM
[12] together in conjunction with Platt’s algorithm [36] for
converting SVM scores to probabilities. The random for-
est used for integrated classification was adapted from the
Weka [32] machine learning package.

6.2. Volumetric Part Localization

Before we can consider our primary objective of subor-
dinate categorization, we evaluate the detection of our vol-



Figure 5. Example Volumetric Primitive Detections. Here are
four representative detections. In the top two images, the bird is
detected and localized with reasonable accuracy. The images in
the lower row depict false positive detections, however. In the
first image, a finger is incorrectly interpreted as the bird’s body;
the second is typical of false detections at the incorrect scale and
location.
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Figure 6. Classification of Volumetric Detections. For the k top-
ranked detections, this plots the corresponding PNAD-RF classifi-
cation performance (using mean-average precision).

umetric part model. To train the birdlet model, we used a
training split that included 15 images of each category (to-
gether with their mirrored annotations) for a total of 420
training images/annotations. The resulting birdlets (we train
a set of 100 birdlets) are applied toward detection on the re-
maining 492 test images.

Some examples detection results are illustrated in Figure
5. The two shown on the left are accurate detections rela-
tive to the ground truth, those on right are mistakes. Com-
paring the detected parts to the test images’ ground-truth
annotations, we find that while many of the detections have
significant errors (e.g. those in Figure 5), many detections
are reasonably accurate. As it is pointless to try to classify
these false detections, we run the classification on the more
accurate detections as described below.

6.3. Subordinate Categorization

We now describe our subordinate categorization results.
We establish a baseline using a pyramidal histogram of
color-SIFT words approach (using the VLFeat toolbox [46]
implementation), providing it the ground-truth bounding

box to assist in localizing the bird. The performance
across test-training splits is 37.12% mean-average preci-
sion. Anecdotally, this approach is comparable to the
multiple-kernel learning approach used by Branson et al.
[9] (37.02% on this same subset of categories). Figure 4(a)
shows a confusion matrix for the Baseline PHOW/SVM
classifier. Next we turn to Figure 4(c), which illustrates the
potential performance of the PNAD-RF (Pose-Normalized
Appearance Descriptor coupled with the Random Forest
classifier) technique. This approach achieves a mean-
average precision across the categories of 66.58% by com-
puting the PNAD features on the ground truth ellipsoids.

Our objective then is to evaluate the same PNAD-RF
method on the estimated ellipsoids from our real detections.
Figure 6 shows the mean classification accuracy for sets of
increasing size. The plot shows that, for the most accurate
20% of the detections, the subordinate classification accu-
racy was above the baseline performance. For the top 10%
of detections, accuracy was as much as 10% higher than
that of the baseline. In Figure 4(b), the confusion matrix
for the most accurate 20% of the detections is shown, a
mean-average precision of 40.25%. We believe that the per-
formance coule be even higher if the birdlet training had a
larger pool of training examples to draw upon.

7. Conclusion
We have presented an approach for subordinate catego-

rization using a pose-normalized appearance representation
founded upon a volumetric part model. We model a basic-
level category by its constituent parts (a set of volumetric
primitives), then leverage the variation in part shape and
appearance properties across a taxonomy to provide the ad-
ditional cues needed for subordinate-level discrimination.

Our model learns to associate raw image patterns (used
in detection) with corresponding volumetric part parame-
ters such as location, scale and orientation. These volumet-
ric parameters implicitly define a mapping from the image
pixels into a pose-normalized appearance space, removing
view and pose dependencies, thus facilitating effective sub-
ordinate categorization.
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